Yongming Luo 骆泳铭

Faculty of Computational Mathematics and Cybernetics
Shenzhen MSU-BIT University, China
E-mail: luo.yongming@smbu.edu.cn

Education
Academic Positions
Research interests
Publications
  1. Solitons, scattering and blow-up for the nonlinear Schrödinger equation with combined power-type nonlinearities on $\mathbb{R}^d\times\mathbb{T}$, with L. Forcella and Z. Zhao. [arXiv]
  2. On the focusing fractional nonlinear Schrödinger equation on the waveguide manifolds, with A. Esfahani, H. Hajaiej and L. Song. [arXiv]
  3. On well-posedness results for the cubic-quintic NLS on $\mathbb{T}^3$, with X. Yu, H. Yue and Z. Zhao. [arXiv]
  4. Normalized ground states and threshold scattering for focusing NLS on $\mathbb{R}^d\times\mathbb{T}$ via semivirial-free geometry. [arXiv]
  5. A Legendre-Fenchel identity for the nonlinear Schrödinger equations on $\mathbb{R}^d\times\mathbb{T}^m$: theory and applications. J. Geom. Anal. 34 (2024), no. 10, Paper No. 313. [arXiv] [Journal]
  6. Almost sure scattering for the defocusing cubic nonlinear Schrödinger equation on $\mathbb{R}^3\times\mathbb{T}$. J. Funct. Anal. 287 (2024), no. 4, Paper No. 110492, 33 pp. [arXiv] [Journal]
  7. Efficient uncertainty quantification for mechanical properties of randomly perturbed elastic rods, with P. Dondl, S. Neukamm and S. Wolff-Vorbeck. Multiscale Model. Simul. 22 (2024), no. 4, 1267–1325. [arXiv] [Journal]
  8. Sharp scattering for focusing intercritical NLS on high-dimensional waveguide manifolds. Math. Ann. 389 (2024), no. 1, 63–83. [arXiv] [Journal]
  9. On existence and stability results for normalized ground states of mass-subcritical biharmonic NLS on $\mathbb{R}^d\times\mathbb{T}^n$, with H. Hajaiej and L. Song. SIAM J. Math. Anal. 56 (2024), no. 4, 4415–4439. [arXiv] [Journal]
  10. On long time behavior of the focusing energy-critical NLS on $\mathbb{R}^d\times\mathbb{T}$ via semivirial-vanishing geometry. J. Math. Pures Appl. 177 (2023), 415–454. [arXiv] [Journal]
  11. On the sharp scattering threshold for the mass–energy double critical nonlinear Schrödinger equation via double track profile decomposition. Ann. Inst. H. Poincaré C Anal. Non Linéaire 41 (2024), no. 1, 187–255. [arXiv] [Journal]
  12. Sharp scattering threshold for the cubic-quintic NLS in the focusing-focusing regime. J. Funct. Anal. 283 (2022), no. 1, Paper No. 109489, 34 pp. [arXiv] [Journal]
  13. On the local in time well-posedness of an elliptic–parabolic ferroelectric phase-field model. Nonlinear Anal. Real World Appl. 65 (2022), Paper No. 103462, 30 pp. [arXiv] [Journal]
  14. On 3d dipolar Bose-Einstein condensates involving quantum fluctuations and three-body interactions, with A. Stylianou. Discrete Contin. Dyn. Syst. Ser. B 26 (2021), no. 6, 3455–3477. [arXiv] [Journal]
  15. Ground states for a nonlocal mixed order cubic-quartic Gross-Pitaevskii equation, with A. Stylianou. J. Math. Anal. Appl. 496 (2021), no. 1, Paper No. 124802, 20 pp. [arXiv] [Journal]