Yongming Luo 骆泳铭
Faculty of Computational Mathematics and Cybernetics
Shenzhen MSU-BIT University, China
E-mail: luo.yongming@smbu.edu.cn
Education
-
Ph.D. in Mathematics, Universität Kassel, 2014-2019.
-
M.Sc. in Mathematics, Technische Universität München, 2011-2014.
-
B.Sc. in Mathematics, Technische Universität München, 2008-2011.
Academic Positions
-
Associate Professor, Shenzhen MSU-BIT University, 2024.01-present.
-
Senior Lecturer, Shenzhen MSU-BIT University, 2023.03-2024.12.
-
Postdoctoral Fellow, Technische Universität Dresden, 2020.04-2023.01.
Research interests
-
Long time behavior of dispersive equations
-
Variational problems arising in material science
Publications
-
Solitons, scattering and blow-up for the nonlinear Schrödinger equation with combined power-type nonlinearities on $\mathbb{R}^d\times\mathbb{T}$,
with L. Forcella and Z. Zhao.
[arXiv]
-
On the focusing fractional nonlinear Schrödinger equation on the waveguide manifolds,
with A. Esfahani, H. Hajaiej and L. Song.
[arXiv]
-
On well-posedness results for the cubic-quintic NLS on $\mathbb{T}^3$,
with X. Yu, H. Yue and Z. Zhao.
[arXiv]
-
Normalized ground states and threshold scattering for focusing NLS on $\mathbb{R}^d\times\mathbb{T}$ via semivirial-free geometry.
[arXiv]
-
A Legendre-Fenchel identity for the nonlinear Schrödinger equations on $\mathbb{R}^d\times\mathbb{T}^m$: theory and applications.
J. Geom. Anal. 34 (2024), no. 10, Paper No. 313.
[arXiv]
[Journal]
-
Almost sure scattering for the defocusing cubic nonlinear Schrödinger equation on $\mathbb{R}^3\times\mathbb{T}$.
J. Funct. Anal. 287 (2024), no. 4, Paper No. 110492, 33 pp.
[arXiv]
[Journal]
-
Efficient uncertainty quantification for mechanical properties of randomly perturbed elastic rods,
with P. Dondl, S. Neukamm and S. Wolff-Vorbeck.
Multiscale Model. Simul. 22 (2024), no. 4, 1267–1325.
[arXiv]
[Journal]
-
Sharp scattering for focusing intercritical NLS on high-dimensional waveguide manifolds.
Math. Ann. 389 (2024), no. 1, 63–83.
[arXiv]
[Journal]
-
On existence and stability results for normalized ground states of mass-subcritical biharmonic NLS on $\mathbb{R}^d\times\mathbb{T}^n$,
with H. Hajaiej and L. Song.
SIAM J. Math. Anal. 56 (2024), no. 4, 4415–4439.
[arXiv]
[Journal]
-
On long time behavior of the focusing energy-critical NLS on $\mathbb{R}^d\times\mathbb{T}$ via semivirial-vanishing geometry.
J. Math. Pures Appl. 177 (2023), 415–454.
[arXiv]
[Journal]
-
On the sharp scattering threshold for the mass–energy double critical nonlinear Schrödinger equation via double track profile decomposition.
Ann. Inst. H. Poincaré C Anal. Non Linéaire 41 (2024), no. 1, 187–255.
[arXiv]
[Journal]
-
Sharp scattering threshold for the cubic-quintic NLS in the focusing-focusing regime.
J. Funct. Anal. 283 (2022), no. 1, Paper No. 109489, 34 pp.
[arXiv]
[Journal]
-
On the local in time well-posedness of an elliptic–parabolic ferroelectric phase-field model.
Nonlinear Anal. Real World Appl. 65 (2022), Paper No. 103462, 30 pp.
[arXiv]
[Journal]
-
On 3d dipolar Bose-Einstein condensates involving quantum fluctuations and three-body interactions, with A. Stylianou.
Discrete Contin. Dyn. Syst. Ser. B 26 (2021), no. 6, 3455–3477.
[arXiv]
[Journal]
-
Ground states for a nonlocal mixed order cubic-quartic Gross-Pitaevskii equation, with A. Stylianou.
J. Math. Anal. Appl. 496 (2021), no. 1, Paper No. 124802, 20 pp.
[arXiv]
[Journal]